Determination of 5-methyltetrahydrofolate in cerebrospinal fluid of paediatric patients: Reference values for a paediatric population

Aida Ormazabal a, Angels García-Cazorla b, Belén Pérez-Dueñas b, Veronica Gonzalez b, Emilio Fernández-Álvarez b, Mercé Pineda b, Jaume Campistol b, Rafael Artuch a,⁎

a Department of Clinical Chemistry, Hospital Sant Joan de Déu, Passeig Sant Joan de Déu, 2, 08950 Esplugues, Barcelona, Spain
b Department of Neurology, Hospital Sant Joan de Déu, Passeig Sant Joan de Déu, 2, 08950 Esplugues, Barcelona, Spain

Available online 19 April 2006

Abstract

Background: Cerebral folate deficiency (CFD) has been described as a neurological syndrome associated with low 5-methyltetrahydrofolate (5-MTHF) values in cerebrospinal fluid (CSF) with normal folate concentrations in plasma. Our aim was to analyse CSF 5-MTHF concentrations in a paediatric control population and in patients with various neurological disorders.

Methods: We studied plasma and CSF samples from 63 paediatric controls (age range: 2 days to 18 years, average: 3.8 years) and from 165 patients (age range: 1 day to 22 years, average: 5.0 years) with severe epileptic encephalopathies of unknown origin, movement disorders, Rett syndrome and mitochondrial diseases. CSF 5-methyltetrahydrofolate was analysed by reverse phase HPLC with fluorescence detection (excitation: 295 nm and emission: 355 nm).

Result: A negative correlation between 5-MTHF values and age of controls was observed ($r=−0.468; p<0.0001$) and reference values were therefore stratified into 3 age groups. Regarding patients, 122 out of 165 showed normal CSF 5-MTHF values while 43 showed decreased values ranging from profound to mild deficiencies. Increased CSF total protein values were associated with the presence of low 5-MTHF concentrations ($\chi^2=7.796; p=0.005$).

Conclusions: The application of this method has been useful for the establishment of reference values and for diagnosis of CFD in paediatric patients. Furthermore, increased CSF total protein concentrations should be considered as a marker of a possible CFD.

Résumé: La détermination de 5-méthyl-tétrahydrofolate dans le liquide céphalorachidien de patients pédiatriques: valeurs de référence pour une population pédiatrique

Aida Ormazabal a, Angels García-Cazorla b, Belén Pérez-Dueñas b, Veronica Gonzalez b, Emilio Fernández-Álvarez b, Mercé Pineda b, Jaime Campistol b, Rafael Artuch a,⁎

a Département de Chimie Clinique, Centre Hospitalier de l’Enfant Saint-Jean-de-Dieu, Passeig Sant Joan de Déu, 2, 08950 Esplugues, Barcelone, Espagne
b Département de Neurologie, Centre Hospitalier de l’Enfant Saint-Jean-de-Dieu, Passeig Sant Joan de Déu, 2, 08950 Esplugues, Barcelone, Espagne

Disponibles en ligne le 19 avril 2006

Résumé

Contexte: La névrose hypofolate cérébrale (CFD) a été décrite comme un syndrome neurologique associé à des niveaux bas de 5-méthyl-tétrahydrofolate (5-MTHF) dans le liquide céphalorachidien (LCR) avec des concentrations normales de folate dans le plasma. Notre objectif était d’analyser les concentrations de 5-MTHF dans le LCR d’une population pédiatrique de contrôle et de patients présentant diverses affections neurologiques.

Méthodes: Nous avons étudié des échantillons de plasma et de LCR de 63 patients pédiatriques (âge: 2 jours à 18 ans, moyenne: 3,8 ans) et de 165 patients (âge: 1 jour à 22 ans, moyenne: 5,0 ans) présentant des épiphanies épileptiques sévères d’origine inconnue, des affections motrices, du syndrome de Rett et des affections mitochondriales. Le 5-méthyl-tétrahydrofolate a été analysé par chromatographie liquide haute performance réversiblement avec détection fluorescente (excitation: 295 nm et émission: 355 nm).

Résultats: Nous avons observé une corrélation négative entre les valeurs de 5-MTHF et l’âge des patients pédiatriques ($r=−0.468; p<0.0001$) et ces valeurs ont donc été stratifiées en 3 groupes d’âge. Concernant les patients, 122 sur 165 présentaient des valeurs de 5-MTHF normales dans le LCR, tandis que 43 présentaient des valeurs diminuées variant de lésions profondes à lésions légères. Les concentrations de protéines totales dans le LCR étaient associées à la présence de bas niveaux de 5-MTHF ($\chi^2=7.796; p=0.005$).

Conclusion: L’application de cette méthode a été utile pour établir les valeurs de référence et pour le diagnostic de CFD chez les patients pédiatriques. De plus, les concentrations augmentées de protéines totales dans le LCR devraient être considérées comme un marqueur d’un CFD possible.

© 2006 Elsevier SAS. Tous droits réservés.

Mots-clés: Névrose hypofolate cérébrale; 5-Méthyl-tétrahydrofolate; Barrière plasma-LCR; Protéines totales; Neurotransmetteurs; Patients pédiatriques

1. Introduction

Cerebral folate deficiency (CFD) has been described as a neurological syndrome associated with low 5-methyltetrahydrofolate (5-MTHF) values in cerebrospinal fluid (CSF) with normal folate concentrations in plasma. Our aim was to standardize an HPLC procedure with fluorescence detection for 5-MTHF analysis in CSF and to establish reference values in a paediatric population. Moreover, CFD might be associated with impaired biosynthesis of some essential molecules. Previous articles have reported a possible association between low 5-MTHF values and impaired tetrahydrobiopterin biosynthesis caused by a reduction in guanosine triphosphate concentrations (folate is involved in the purine biosynthetic pathway). Consequently, since tetrahydrobiopterin is the essential cofactor in the rate-limiting steps of dopamine and serotonin biosynthesis, a reduction of biogenic amine metabolites (especially 5-hydroxyindoleacetic acid) has been previously reported [1].

Folate is involved in almost 100 metabolic reactions [4], and CFD might be associated with impaired biosynthesis of some essential molecules. Previous articles have reported a possible association between low 5-MTHF values and impaired tetrahydrobiopterin biosynthesis caused by a reduction in guanosine triphosphate concentrations (folate is involved in the purine biosynthetic pathway). Consequently, since tetrahydrobiopterin is the essential cofactor in the rate-limiting steps of dopamine and serotonin biosynthesis, a reduction of biogenic amine metabolites (especially 5-hydroxyindoleacetic acid) has been previously reported [1].

Our aim was to standardize an HPLC procedure with fluorescence detection for 5-MTHF analysis in CSF and to establish reference values in a paediatric population. Moreover,
2. Materials and methods
2.1. Control subjects

For reference values, plasma and CSF samples from 63 paediatric controls (age range: 2 days to 18 years, average: 3.8 years) were simultaneously analysed. In this control population, lumbar puncture was performed for the diagnosis of viral or bacterial meningitis, encephalitis, and other neurological conditions of non-metabolic origin. Exclusion criteria were plasma folate deficiency, clinical profile compatible with CFD, presence of bacterial meningitis, traumatic or tumoral disorders of the central nervous system, intracerebral haemorrhage, CSF blood contamination and increased total protein concentration in CSF.

2.2. Patients

We studied plasma and CSF samples from 165 patients (age range: 1 day to 22 years, average: 5.0 years) with severe epileptic encephalopathies of unknown origin, movement disorders, Rett syndrome and mitochondrial diseases. Plasma and CSF samples from patients and controls were collected on the same day between 8:00 and 10:00 a.m., following a previously reported protocol [5]. For 5-MTHF determination, CSF samples were taken and immediately frozen at −80 °C until analysis.

Samples from patients and controls were obtained in accordance with the Helsinki Declaration of 1964, as revised in 2000. Informed consent was obtained from parents, and the ethics committee of the Hospital Sant Joan de Déu approved the study.

2.3. Biochemical studies

For 5-MTHF analysis, CSF samples were diluted 1:2 in 5 mg/mL of ascorbic acid diluted in phosphate buffer 5 mmol/L (pH = 2.3), centrifuged at 1500×g (10 min), and filtered through 0.45-μm nylon filters (Millipore, Bedford, MA, USA; Reference: SLHVRO4NK). 5-MTHF calibrator (Sigma Chemical Co, St Louis, MO, USA; Reference: M-0132) was diluted to attain a final concentration of 22 nmol/L. For 5-MTHF determination, CSF samples were taken and immediately frozen at −80 °C until analysis.

For reference values, plasma and CSF samples from 63 paediatric controls (age range: 2 days to 18 years, average: 3.8 years) were simultaneously analysed. In this control population, lumbar puncture was performed for the diagnosis of viral or bacterial meningitis, encephalitis, and other neurological conditions of non-metabolic origin. Exclusion criteria were plasma folate deficiency, clinical profile compatible with CFD, presence of bacterial meningitis, traumatic or tumoral disorders of the central nervous system, intracerebral haemorrhage, CSF blood contamination and increased total protein concentration in CSF.

Biogenic amine metabolites in CSF (5-hydroxyindoleacetic (5-HIAA), homovanillic acids (HVA), pterins (neopterin (NP), and biopterin (BP)) were measured by ion pair HPLC with electrochemical and fluorescence detection following previously reported procedures [5]. CSF total protein was analysed by automated procedures in an Architect c8000 system (Abbott Laboratories, IL, USA). Increased total protein concentration in CSF was considered when values were higher than the upper limit of our reference intervals: 1.20 g/L in newborns (1–7 days), 0.80 g/L (8–30 days), 0.65 g/L (1–2 months) and 0.40 g/L (3 months to 18 years).

To establish reference values for the CSF/plasma folate ratio (a marker of folate transport across blood–CSF barrier), plasma folate concentrations were analyzed by automated chemiluminescent immunoassays (ADVIA Centaur, Bayer, Tarrytown, NY, USA).

Kolmogorov–Smirnov test was applied to assess data distribution. Since data followed a Gaussian distribution, Pearson test was applied to search for correlation among the different variables in the study. Student’s t-tests were applied to compare 5-MTHF results between the different age groups. Chi-square test was applied to search for association between qualitative variables (folate deficiency and the presence of increased CSF total protein concentrations). Statistical calculations were performed with the SPSS 12.0 program.

3. Results

Within-run imprecision was 2.70% (56.4 nmol/L) and between-run imprecision was 1.92% (16.4 nmol/L). The procedure was linear over the range of 0.5–250 nmol/L.

Reference values and patient data are reported in Table 1. A negative correlation between 5-MTHF values and age of patients was observed ($r = -0.468$; $p < 0.0001$) (Fig. 1) and reference values were therefore stratified into 3 age groups. Student’s t-test showed significant differences among these groups (Table 1). Regarding patients, 122 out of 165 showed normal CSF 5-MTHF values (data not shown), while 43 showed

Table 1

| Reference values of 5-MTHF in a paediatric population and patients with CFD |
|-----------------------------|-----------------------------|-----------------------------|
| | 5-MTHF (nmol/L) | Plasma folate (nmol/L) | CSF/plasma |
| **Controls** | | | |
| A 0–1 year (n=12) | 103 (20.4) | 32 (9.58) | 3.5 (1.2) |
| B 2–3 years (n=32) | 72 (19.1) | 34 (13.5) | 2.4 (0.9) |
| C 4–18 years (n=19) | 56 (10.7) | 18.1 (4.9) | 3.2 (0.7) |
| **Patients with low 5-MTHF**| | | |
| 0–1 year (n=5) | 42 (13.5) | 27 (14.4) | 1.6 (0.9) |
| 2–3 years (n=8) | 31 (12.9) | 25 (13.6) | 1.4 (1.1) |
| 4–18 years (n=30) | 31 (9.6) | 12 (7.9) | 3.0 (1.3) |

Results were expressed as average (S.D.) range. Student’s t-test: group A vs. B: 5-MTHF, $p<0.0001$. Group B vs. C: 5-MTHF, $p=0.002$. 5-MTHF: 5-methyltetrahydrofolate. CSF: cerebrospinal fluid.
showed such increased CSF total protein values (intervals, while only 10 out of 122 with normal 5-MTHF values concentration higher than the upper limit of our reference decreased 5-MTHF values in CSF showed CSF total protein together (movement disorders of unknown origin. Taking all patients and the other 27 had severe epileptic encephalopathy and clinical signs compatible with CFD caused by autoantibodies, 7.8 and 24.2 nmol/L, respectively), 8 had Rett syndrome, 4 had disorders (especially those with KSS) presented a profound 5-MTHF values may be associated with other neurological related, while CSF/plasma values were not age-related. syndrome may also present decreased 5-MTHF values. All these data suggest that monitoring of 5-MTHF values is advisable in these disorders, since therapeutic administration of folic acid may reverse some of the neurological signs [3,8,9].

We found 8 patients with decreased CSF/plasma folate ratio, suggesting a transport defect across blood–CSF barrier. Among these, 3 were those with KSS, supporting a choroid plexus dysfunction in this syndrome, and 4 with clinical features resembling CFD (motor regression after a normal period of development, seizures and choreoatetosic movements). A further 5 patients presented plasma folate deficiency together with low CSF 5-MTHF values, highlighting the importance of the simultaneous determination of plasma folate status in order to identify systemic folate deficiency as a cause of decreased CSF 5-MTHF concentrations. Taken together, 43 out of 165 patients studied presented low CSF 5-MTHF values, suggesting that CFD was a relatively common observation in our paediatric patients. Although a final diagnosis was not achieved in all of these cases, the early detection of CFD would allow starting folic acid supplementation, since it seems that patients treated early with this drug respond better that those with a late folic acid treatment [9].

Increased CSF total protein concentration has been related with neurological diseases associated with either increased permeability of blood–CSF barrier or increased intrathecal immunoglobulin synthesis [10]. In KSS, it has been suggested that the accumulation of mutated mtDNA in the choroid plexus could be associated with the characteristically high CSF protein values and the CSF 5-MTHF deficiency [7]. This led us to analyse a possible association between the presence of increased CSF total protein values with decreased CSF 5-MTHF in our patients, resulting in a statistically significant association between the two factors. Therefore, CSF 5-MTHF measurement seems advisable in patients presenting increased total protein concentrations, especially in those with a possible blood–CSF barrier dysfunction. The simultaneous measurement of albumin concentrations both in blood and CSF would provide more information about the blood–CSF barrier status than total protein values, and this index has been applied to estimate impaired protein transport across blood/CSF barrier [11]. Unfortunately, we could not measure plasma and CSF albumin in the present study, but our results suggest that the calculation of albumin plasma/CSF ratio should be included when low CSF 5-MTHF and increased total protein values are detected.

Due to the elevated number of reactions in which folate is involved, the consequences of CFD may be very variable; involvement of decreased biogenic amine turnover has been suggested as a possible pathophysiological mechanism [4]. However, according to our data, no association was demonstrated between 5-MTHF values and pterins or neurotransmitter metabolites. Even patients with a profound folate deficiency showed normal biogenic amines values, and therefore, other pathogenic mechanisms are probably related with CFD.

In conclusion, the application of this method has been useful for the establishment of reference values and for the diagnosis of CFD in paediatric patients. Furthermore, increased CSF total

Fig. 1. Negative correlation between 5-MTHF and age in the control group.

decreased values ranging from profound to mild deficiencies (Table 1). Among these, 5 presented plasma folate deficiency and 8 decreased CSF/plasma folate ratio (suggesting a transport defect across blood–CSF barrier), while the other 30 showed neither plasma folate deficiency nor decreased CSF/plasma folate ratio. Clinically, among these 43 patients with CSF 5-MTHF deficiency, 4 were diagnosed with a mitochondrial disorder (3 presenting a KSS with CSF 5-MTHF values of 0.6, 7.8 and 24.2 nmol/L, respectively), 8 had Rett syndrome, 4 had clinical signs compatible with CFD caused by autoantibodies, and the other 27 had severe epileptic encephalopathy and movement disorders of unknown origin. Taking all patients together (n=165), 11 out of the 43 patients who presented with decreased 5-MTHF values in CSF showed CSF total protein concentration higher than the upper limit of our reference intervals, while only 10 out of 122 with normal 5-MTHF values showed such increased CSF total protein values (χ²=7.796; p=0.005). No correlation was observed (Pearson test) between 5-MTHF and BP, NP 5-HIAA, and HVA after correction for age in controls and patients.

4. Discussion

We present here an HPLC with fluorescence detection procedure [6] whose metrological data suggest that the quality of the procedure is appropriate for diagnosis of CFD. To date, reference values for CSF 5-MTHF and CSF/plasma folate ratio in paediatric patients have scarcely been reported [1]. As previously reported [1], CSF 5-MTHF concentrations were age-related, while CSF/plasma values were not age-related.

Besides CFD caused by autoantibodies [2], decreased CSF 5-MTHF values may be associated with other neurological conditions. According to our results, patients with mitochondrial disorders (especially those with KSS) presented a profound 5-MTHF deficiency. In these patients, an impaired 5-MTHF transport across choroid plexus has been proposed as the main mechanism explaining these profound deficiencies [7]. Moreover, patients with other neurological disorders such as Rett
protein concentrations should be considered as a marker of a possible CFD. No relationship was observed between 5-MTHF values and pterin and neurotransmitter concentrations.

Acknowledgements

This work was supported by FIS grants REDEMETH G03/054, INERGEN C03/05 and Marató TV3 (014010).

References